If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9y2 + 30y + 17 = 0 Reorder the terms: 17 + 30y + 9y2 = 0 Solving 17 + 30y + 9y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 1.888888889 + 3.333333333y + y2 = 0 Move the constant term to the right: Add '-1.888888889' to each side of the equation. 1.888888889 + 3.333333333y + -1.888888889 + y2 = 0 + -1.888888889 Reorder the terms: 1.888888889 + -1.888888889 + 3.333333333y + y2 = 0 + -1.888888889 Combine like terms: 1.888888889 + -1.888888889 = 0.000000000 0.000000000 + 3.333333333y + y2 = 0 + -1.888888889 3.333333333y + y2 = 0 + -1.888888889 Combine like terms: 0 + -1.888888889 = -1.888888889 3.333333333y + y2 = -1.888888889 The y term is 3.333333333y. Take half its coefficient (1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. 3.333333333y + 2.777777779 + y2 = -1.888888889 + 2.777777779 Reorder the terms: 2.777777779 + 3.333333333y + y2 = -1.888888889 + 2.777777779 Combine like terms: -1.888888889 + 2.777777779 = 0.88888889 2.777777779 + 3.333333333y + y2 = 0.88888889 Factor a perfect square on the left side: (y + 1.666666667)(y + 1.666666667) = 0.88888889 Calculate the square root of the right side: 0.942809042 Break this problem into two subproblems by setting (y + 1.666666667) equal to 0.942809042 and -0.942809042.Subproblem 1
y + 1.666666667 = 0.942809042 Simplifying y + 1.666666667 = 0.942809042 Reorder the terms: 1.666666667 + y = 0.942809042 Solving 1.666666667 + y = 0.942809042 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + y = 0.942809042 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + y = 0.942809042 + -1.666666667 y = 0.942809042 + -1.666666667 Combine like terms: 0.942809042 + -1.666666667 = -0.723857625 y = -0.723857625 Simplifying y = -0.723857625Subproblem 2
y + 1.666666667 = -0.942809042 Simplifying y + 1.666666667 = -0.942809042 Reorder the terms: 1.666666667 + y = -0.942809042 Solving 1.666666667 + y = -0.942809042 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + y = -0.942809042 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + y = -0.942809042 + -1.666666667 y = -0.942809042 + -1.666666667 Combine like terms: -0.942809042 + -1.666666667 = -2.609475709 y = -2.609475709 Simplifying y = -2.609475709Solution
The solution to the problem is based on the solutions from the subproblems. y = {-0.723857625, -2.609475709}
| n^2+5n-24=0 | | 3x^2-8=0 | | T-2d=7 | | 2(2x-7)=14 | | 5x+7y=166 | | 10=-16t^2+30t+9 | | 1+1=1x | | 6(5+x)=3(2x+10) | | -5p-14=2p+3-10p+1 | | -5-14=2p+3-10p+1 | | 2X+3(-2x-1)=-2x-1 | | 2X-3(-2x-1)=-2x-1 | | -x-16=-71 | | 2x^2+5x+1=0 | | 4+a+1=-5a+5 | | 4z^5=84z^3 | | 4+1a+1=-5a+5 | | -(x+3)=12 | | x^2=4x-40 | | 25(x+125-125)=5x | | 3.4-2d=8.2 | | w+x=2y+z | | 9x-5-11x=5(3x-7) | | 4(3x+4)=112 | | 4x+y=217 | | 6s-13=-7 | | 5x-14=108-7 | | 5x-13=108-7 | | 8y-40=-12y | | 5x-12=108-7 | | 5x-15=108-7 | | -3x=13.5 |